
1 4  j a n u a r y  2 0 1 6  |  V O L  5 2 9  |  n a T u r E  |  1 8 5

LETTEr
doi:10.1038/nature16175

Controlling many-body states by the electric-field 
effect in a two-dimensional material
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To understand the complex physics of a system with strong 
electron–electron interactions, the ideal is to control and monitor 
its properties while tuning an external electric field applied to 
the system (the electric-field effect). Indeed, complete electric-
field control of many-body states in strongly correlated electron 
systems is fundamental to the next generation of condensed matter 
research and devices1–3. However, the material must be thin enough 
to avoid shielding of the electric field in the bulk material. Two-
dimensional materials do not experience electrical screening, 
and their charge-carrier density can be controlled by gating. 
Octahedral titanium diselenide (1T-TiSe2) is a prototypical two-
dimensional material that reveals a charge-density wave (CDW) 
and superconductivity in its phase diagram4, presenting several 
similarities with other layered systems such as copper oxides5, 
iron pnictides6, and crystals of rare-earth elements and actinide 
atoms7. By studying 1T-TiSe2 single crystals with thicknesses of 
10 nanometres or less, encapsulated in two-dimensional layers of 
hexagonal boron nitride, we achieve unprecedented control over the 
CDW transition temperature (tuned from 170 kelvin to 40 kelvin), 
and over the superconductivity transition temperature (tuned from 
a quantum critical point at 0 kelvin up to 3 kelvin). Electrically 
driving TiSe2 over different ordered electronic phases allows us 
to study the details of the phase transitions between many-body 
states. Observations of periodic oscillations of magnetoresistance 
induced by the Little–Parks effect show that the appearance of 
superconductivity is directly correlated with the spatial texturing of 
the amplitude and phase of the superconductivity order parameter, 
corresponding to a two-dimensional matrix of superconductivity. 
We infer that this superconductivity matrix is supported by a matrix 
of incommensurate CDW states embedded in the commensurate 
CDW states. Our results show that spatially modulated electronic 
states are fundamental to the appearance of two-dimensional 
superconductivity.

The charge-carrier density—or equivalently, the Fermi energy—
strongly controls phase transitions in correlated systems. Traditionally, 
charge-carrier density can be controlled by doping, that is, by chem-
ical modification of the material. Unfortunately, the alteration of the 
system’s chemical composition leads to the unavoidable introduction 
of disorder. In strongly correlated systems, owing to their exponen-
tial sensitivity to the local electronic environment, disorder can have 
a profound impact that masks the intrinsic many-body behaviour8. 
Hence, there is a growing need to change the charge-carrier density of 
strongly correlated systems without chemical means. The application 
of an electric field is one of the ‘cleanest’ ways (that is, it tends not to 
introduce disorder) to address many-body states because it is intrinsi-
cally homogeneous. However, electric fields are screened by the bulk 
material in three-dimensional metals, making their use difficult.

The Fermi energy not only controls the number of electric carriers 
(electrons or holes) but also the screening of external electric fields 

and internal electron–electron interactions9. In two-dimensional (2D) 
systems the electrons move in a plane while the electric field propagates 
in three-dimensional space. Hence, 2D electrons are unable to screen 
electric fields, external or their own. Therefore, we chose to work with a 
2D material, TiSe2, of nanometre-scale thickness, and we used an ionic 
gel electrolyte gate to apply the electric field. In addition, the flake of 
TiSe2 was encapsulated by a 2D dielectric, hexagonal boron nitride, to 
avoid external disorder and chemical oxidation and degradation caused 
by both air and the electrolyte.

Electrical transport measurements under electric-field-induced 
doping enabled us to construct the phase diagram shown in Fig. 1. 
Electron doping suppresses the CDW transition from 170 K to 40 K 
and superconductivity appears with a dome that peaks at 3 K. We show 
that the emergence of superconductivity is directly associated with the 
inhomogeneous electronic states that correspond to a periodic struc-
ture of the amplitude and phase shifts of the superconductivity order 
parameter. This periodic structure must be stabilized and pinned to 
the lattice, so we can infer the presence of an incommensurate CDW 
(ICDW) matrix surrounding commensurate CDW (CCDW) regions.

TiSe2 nanosheets with thicknesses of 10 nm or less were prepared by 
mechanical exfoliation of a high-quality single crystal (Extended Data 
Fig. 1). The device fabrication and measurement details are described 
in Methods and Supplementary Information. In Fig. 2a we sketch the  
electric-field double layer transistor device used in our experiments; 
Fig. 2b shows a typical top-gate sweep at 285 K and the variation of 
the electron density as measured by the Hall effect (see Methods and 
Extended Data Fig. 2a, b). Using an electrolyte top gate and an elec-
trostatic doped-Si bottom gate we could control the electron density 
up to about 1015 cm−2 and thereby explore the phase diagram of this 
2D material.

Variation of the charge-carrier density n leads to strong variations 
of the sheet resistance RS of the device, as shown in Fig. 2c, d. At low 
charge-carrier densities, one can clearly see a peak in the resistivity 
versus temperature. The CDW transition temperature10, TCDW, corre-
sponds to the inflection point of the resistance and was also measured 
by using the Hall effect (Extended Data Fig. 2c), to detect the recon-
struction of the Fermi surface. On increasing the charge-carrier density, 
TCDW decreases from 170 K to 40 K before becoming undetectable at 
around n = 7.5 × 1014 cm−2.

On increasing the electron density we observe the superconductivity 
state, as shown in Fig. 2d. The superconductivity transition temper-
ature, TC, increases from 0 K at the quantum critical point (QCP) at 
n = 1.2 × 1014 cm−2 up to approximately 3 K at an optimal density of 
n = 7.5 × 1014 cm−2. We note that this is exactly the density at which the 
CDW signal vanishes, indicating a scenario of two competing orders11. 
A further increase in density suppresses TC, giving rise to the forma-
tion of a superconductivity dome, as shown in Fig. 1 together with 
representations of the inferred structure in each region of the phase 
diagram (discussed below).
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When the superconducting coherence length ξ(T) becomes larger 
than the sample thickness close to TC we expect the material to behave 
as a 2D system and the superconducting transition is anticipated to be 
of the Kosterlitz–Thouless (K–T) type with vortex–antivortex unbind-
ing12. One of the trademarks of the K–T transition is the broadening  
of the resistance with lowering of the temperature, as shown in Fig. 2d.  

For the K–T transition the resistivity is expected to scale with the coher-
ence length as:

–( )ξ( ) ≈ − / − ( )T a b T Texp 1K T

where TK–T is the K–T transition temperature, and a and b are material 
parameters. The experimental result reproduces this relation close to TK–T,  
as shown in Fig. 3a for a charge-carrier density of n = 2.67 × 1014 cm−2.  
We also observe current–voltage scaling13 in the superconductiv-
ity phase (V ∝ Iα) with α = 5 for n = 5.9 × 1014 cm−2 at the lowest  
temperature (Extended Data Fig. 3a). By fitting to equation (1), the 
K–T transition temperatures can be extracted for each doping level. In 
Fig. 3b we show the behaviour of TK–T close to the QCP as a function of 
electron density. Quantum critical scaling14 predicts TK–T ∝ (n − nc)zν, 
where z is the dynamical exponent and ν is the correlation length expo-
nent. As shown in Fig. 3b and Extended Data Fig. 3b and c, we find 
zν ≈ 2/3. The same scaling was observed in other systems15–17, and 
indicates that the superconductivity transition is of the classical three- 
dimensional XY or, equivalently, 2D quantum universality class16,17. 
In the absence of a specific screening or dissipation mechanism18,19,  
z is expected to be 1, so that ν = 2/3, which implies that our system is 
in the clean limit by the Harris criterion20.

The temperature dependence of the sheet resistance can be written 
as RS = RS0 + CTα (where RS0 is the residual resistance at 3 K), which 
decreases monotonically with charge-carrier density as shown in  
Fig. 3c, in accordance with the above conclusion regarding the Harris 
criterion. In an ordinary metal (or Fermi liquid) we expect α = 2, inde-
pendent of doping. Nevertheless, in Fig. 3c we find 1 < α < 2 (Extended 
Data Fig. 4a, b) over the entire phase diagram. Notice that at around 
n = 7.5 × 1014 cm−2, α ≅ 1.5 extends down to temperatures close to  
the superconductivity transition, which would seem to indicate the 
presence of another QCP, owing to suppression of the CDW, inside 
the superconductivity dome. In what follows we show that this is not 
the case.

Figure 1 | Phase diagram of TiSe2 under electron doping. Circles show 
TK–T and squares show TCDW. The insets show the lattice structure in each 
phase. In the CDW phases we illustrate the atomic displacements within 
an enlarged unit cell; in the phase in which ICDW and CDW coexist we 
schematically illustrate the ICDW domain walls between the CCDW regions 
as the red region (which we have exaggerated to occupy a single unit cell 
instead of a few nanometres). The error bars define the difference in TCDW 
between the values derived from resistivity versus temperature curves and 
those derived from charge-carrier density versus temperature curves.
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The presence of the competing orders in this 2D system has striking 
consequences for the electronic transport. In Fig. 4a we show the mag-
netoresistance as a function of magnetic field for a density of 
n = 5.9 × 1014 cm−2. The magnetoresistance in the superconductivity 
phase is positive, as expected, but we clearly observe the presence of 
plateaus and oscillations in the data. By taking the derivative of the 
magnetoresistance, dR/dB, in Fig. 4b we observe that these features are 
temperature-independent and have well defined periods. The period-
icity in magnetic field reflects a spatial periodicity given by the cyclotron 
equation, Φ= ( /δ ) /� Bc 0

1 2 , where Φ0 = h/(2e) ≈ 2,068 T nm2 is the flux 
quantum and δB is the magnetic field periodicity. We have analysed the 
magnetoresistance data as a function of electron density (or gate  
voltage). (Magnetoresistance data for other electron densities are shown 
in Extended Data Fig. 5.) One can see a clear trend in the data (as shown 
in Fig. 4c): the length scale decreases monotonically with electron den-
sity from �(n) ≈ 450 nm at n ≈ 1.3 × 1014 cm−2 to �(n) ≈ 170 nm at 

n ≈ 5.9 × 1014 cm−2 (�(n) and δB are displayed in Fig. 4c as DCDW and 
BM, respectively).

It is clear that the well defined structure of the magnetoresistance 
reflects spatial fluctuations of the electronic pairing. A consistent expla-
nation for these features is based on the Little–Parks effect21, whereby 
Cooper pairs are constrained to move in loops in the material—that 
is, pairing is local and constrained to well defined regions. The length 
scale we observe is associated with the trapping of magnetic flux quanta 
by the Cooper pairs. The existence of such a superconductivity matrix 
over a range of temperatures and charge-carrier densities in a single 
crystal is remarkable, leading us to suggest that the superconductivity 
matrix must be pinned and stabilized by an underlying matrix of inho-
mogeneous electronic states. Fluctuations of an underlying charge or 
spin order parameter have led to the discovery of superconductivity in 
a wide range of systems; the suppression of the CDW transition from 
170 K to 40 K, concomitant with the appearance of superconductivity 

a

T – TK–TRS ∝ exp –b 

TK–T = A(n – nC)
A = 1.17
nC = 1.21
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Figure 3 | Temperature dependence of the sheet resistance RS close to 
the K–T transition. a, Fitting of the resistance to the K–T formula for a 
charge-carrier density of n = 2.67 × 1014 cm−2. b, Behaviour of TK–T at the 
QCP with critical exponent zν ≈ 2/3. c, α values derived by fitting the  

R versus T data from 3 K to 100 K with the formula RS = RS0 + CTα, where  
α is plotted in colour against both charge-carrier density and temperature. 
The residual resistance at 3 K versus charge-carrier density is plotted on 
the right axis.

Figure 4 | The magnetoresistance for a charge-carrier density of 
5.9 × 1014 cm−2 shows periodic oscillation. a, The magnetoresistance 
at different temperatures (each step is 0.25 K) in the superconductivity. 
b, Colour contour plot of the derivative of magnetoresistance dRS/dB 
versus magnetic field B and temperature T, which displays temperature-
independent periodic oscillations. c, Derived magnetoresistance 

oscillating period BM and the corresponding length scale DCDW. Error bars 
define the 90% confidence interval. d, Charge-carrier-density-dependent 
two-terminal conductance dI/dV shows the ZBCP, indicating non-s-wave 
superconducting pair symmetry. Charge-carrier density n =C × 1014 cm−2, 
where C is indicated by the colour; see legend.
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and non-Fermi-liquid behaviour, strongly indicates that the CDW  
plays a part.

We now consider how local variations of the CDW can stabilize the 
superconductivity matrix. The CDW corresponds to a spatial modu-
lation of the charge density ·ρ Δδ = ( ) − ( )r e Q r ri[ ], where Δ is the CDW 
order parameter, r is the position in the 2D plane and Q is the CDW 
ordering vector. On the basis of symmetry alone, the Ginzburg–Landau 
free energy for Δ can be written as22

⁎

∫ Δ Δ Δ

Δ κ Δ∇ ∇

= ( ) + ( ) + ( )

+  ⋅( − ) + | × | 

( )
{

}
r

Q Q Q

F a b c

m Q
i

d

1
2

2

2 3 4

2
2 2

where a, b, c, m* and κ are phenomenological parameters that deter-
mine the energy scale for the spatial variation of ρ. Variations in the 
amplitude Δ are energetically very costly because the CDW has to be 
locally destroyed. However, variations in the CDW phase are energet-
ically allowed and can be expressed as

·Δ Δ θ( ) =










− ( )








( )r K r riexp
2

30

where Δ0 is the CDW order parameter in the uniform CCDW phase, 
K is a reciprocal lattice vector in the direction of Q, θ(r) is a spatially 
varying phase and we have included the known CCDW wavevector 
for TiSe2 (1/2, 1/2, 1/2). When θ = πn (where n is an integer) we again 
have a CCDW, whereas if θ(r) = Q ⋅ r we have an ICDW. For illustrative 
purposes, we assume that the variation in θ(x) is one-dimensional in 
nature and substitute equation (3) into equation (2) to obtain

∫ θ θδ = ∂ ( ) −  −  − ( ( )) ( ){ }F x x g xd 1
2

1 1 cos 2 4x
2

where g depends on the Ginzburg–Landau parameters and 
x = |K/2 − Q|r is the dimensionless length scale. The last equation 
reflects how the free energy changes locally with the phase. Minimizing 
equation (4) with respect to θ we obtain

θ θ= − ( ) ( )
x

gd
d

2 sin 2 5
2

2

the differential equation for the pendulum (x plays the part of ‘time’), 
which has periodic solutions with period �ICDW ≈ π/(g1/2|K/2 − Q|). 
These spatially periodic variations of the phase represent Neél-like 
domain walls of ICDW between CCDW regions with different phase 
where �ICDW is the thickness of the domain wall. McMillan described23 
how these defects allow a uniform ICDW with slowly varying phase to 
break apart into domains of CCDW separated by ICDW domain walls 
that have more rapidly varying phases. The domain wall density is π/Q 
to match the homogeneous ICDW state.

A full solution to this problem in 2D is lacking, but we speculate 
that domain walls form a periodic matrix illustrated schematically in 
Fig. 1; blue CCDW regions with constant phases are embedded in a 
periodic ICDW matrix. We note that a similar structure was observed 
by scanning transmission microscope measurements of the closely 
related 1T-TaS2, in which the ICDW state exists at ambient condi-
tions24. The self-organizing principle is that repulsive interactions 
occur between domain walls owing to higher-order terms in the free 
energy23. Therefore the ICDW domains will form a matrix, breaking 
the CCDW into domains with fixed area, as required by the Little–
Parks effect.

As shown by ref. 23, ICDW dynamic phase fluctuations—that 
is, phonon modes of the ICDW (not the lattice)—can exist in these 
domain walls. It is conceivable that these ICDW phonons induce 
superconductivity pairing and localize Cooper pairs in one-dimen-
sional regions of the 2D system. Another intriguing aspect of our results 

is displayed in Fig. 4d, which shows the point-contact conductance 
spectra measured at each density, in which we observe a clear zero bias 
conductance peak (ZBCP) in the superconductivity state. Extended 
Data Fig. 6 shows its temperature and magnetic field dependence at 
a density of n = 2.1 × 1014 cm−2. ZBCPs are observed in a wide range 
of unconventional superconductors and are understood to arise by 
Andreev reflection from a Cooper pairing potential having an internal 
phase shift of the superconductivity order parameter25. These results 
are therefore in stark contrast to the experimentally determined single- 
gap s-wave superconductivity observed in the Cu-intercalated CuxTiSe2 
(ref. 26). It is unlikely that our 2D samples would develop a super-
conductivity order parameter that is qualitatively distinct from that 
of CuxTiSe2 (for example, d-wave). The existence of the ZBCP there-
fore suggests that, together with the spatial modulation of the super-
conductivity amplitude (which is demonstrated by the Little–Parks 
effect), there may also be a modulation of the superconductivity phase, 
although the correspondence between the amplitude variation and the 
phase variation cannot be determined from our measurements.

The observed state in 1T-TiSe2 bears some similarity to the pair 
density wave (PDW) superconducting CDW phases. However, fur-
ther experiments are required to substantiate the PDW hypothesis. 
Although one-dimensional PDW states have attracted more attention 
within the context of the copper oxide superconductors27, more general 
PDW states having phase and amplitude variations in 2D are expected 
to be possible28.

The coexistence of CCDW and ICDW was first observed by recent 
X-ray measurements of TiSe2 at pressures close to where the supercon-
ductivity phase was expected29. ICDW domain walls with a periodicity 
along the c axis of ~300 nm were observed, similar to the length scale 
determined in this experiment. While the periodicity was most pro-
nounced along the c axis, a weak in-plane signal of incommensurability 
was observed that might correspond to the electronic microstructure 
observed here in the superconducting order (Abbamonte, P., personal 
communication, 15 January 2015).

In summary, we studied samples of TiSe2 a few nanometres in thick-
ness and tuned the material through the CDW and superconductiv-
ity phases using the electric-field effect. This technique allowed us to 
study in great detail the QCP in the material and classify its universality 
class. We also identified the interplay between superconductivity and 
CDW through the formation of an inhomogeneous many-body state 
which we identify with the localization of Cooper pairs along a matrix 
of incommensurate dislocations surrounding regions of CCDW. We 
conjecture that the superconductivity has in its origin in the coupling 
of the McMillan phonon modes of the ICDW with the electrons. These 
results open up opportunities for electric-field tuning of many-body 
states in condensed matter research.
Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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MeTHODs
Crystal growth and quality verification. TiSe2 single crystals were grown in 
two steps by the chemical vapour transport method30. First, polycrystalline TiSe2 
was prepared by mixing high-purity titanium powder (from Alfa Aesar, 99.99%) 
and selenium powder (from Alfa Aesa, 99.999%) in a stoichiometric ratio and 
heating the mixture at 800 °C for 3 days in a vacuum-sealed (<10−6 Torr) silica 
tube. Second, the polycrystalline powder was loaded into a two-zone tube furnace 
together with the transport agent I2 at a concentration of 5 mg cm−3. The polycrys-
talline powder was then heated to 670 °C and single crystals of TiSe2 were collected 
at 600 °C over a period of 10 days.

The quality of the bulk single crystals was confirmed by X-ray diffraction 
and temperature-dependent Raman spectroscopy31, as shown in Extended Data  
Fig. 1a and b. Further energy dispersive X-ray spectroscopy verified the stoichio-
metric composition of the crystals.
Device fabrication and characterization. TiSe2 was exfoliated in a pure argon 
atmosphere by Scotch tape32 onto a SiO2 (300 nm)/Si wafer and examined under 
high-resolution optical microscope. The non-uniformity in thickness can be 
discriminated by cross-correlation of the colour with atomic force microscope 
measurements of the height. Flakes with uniform thickness of around 10 nm or 
less and a long bar shape were selected for the device fabrication. Electrodes for 
transport measurements were fabricated by standard electron beam lithography 
techniques using a polymethylmethacrylate (PMMA) positive resist, followed by 
deposition of Ti (10 nm)/Au (65 nm). Thin crystals (one to three layers) of com-
mercial hexagonal boron nitride were transferred onto the nanosheets within the 
argon atmosphere33,34; the role of hexagonal boron nitride is to protect the TiSe2 
from degradation by both oxidation and damage by the electrolyte gate.

Atomic force microscope results show that the surface is clean (as shown in 
Extended Data Fig. 2b), with a roughness within ±1 nm, which may result from 
the non-uniform thickness of the TiSe2 flake.

Electrical transport measurements were performed in both a 4He cryostat and 
in a 3He/4He dilution cryostat. Electrical transport measurements were performed 
using standard alternating-current (a.c.) lock-in amplifier and direct-current (d.c.) 
techniques, and resistance-versus-temperature and field measurements were per-
formed using currents of 10–100 nA to avoid Joule heating.

The ion gel solution was prepared by mixing the triblock copolymer polysty-
rene-polymethylmethacrylate-polystyrene (PS-PMMA-PS) and the ionic liquid 
1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM-TFSI) 
into an ethyl propionate solvent (the weight ratio of polymer to ionic liquid to 
solvent is 0.7:9.3:90)35. After covering the device with ion gel droplets by drop 
casting, the device as shown in Extended Data Fig. 2a was loaded into the cryostat 
and kept at room temperature and high vacuum for one hour to remove residual 
water from the electrolyte. Afterwards, resistance was measured against gate volt-
age to characterize the capability of the ion gel; a typical electrolyte gate sweep is 
shown in Fig. 1b.

The charge-carrier density doping by the ionic gate can be derived from the 
Hall-effect measurement both at high (285 K) and low (3 K) temperature; the for-
mer is shown in Extended Data Fig. 2c, and the latter is used to construct the phase 
diagram because the latter has a better direct correlation with the superconducting 
dome. Although the hexagonal boron nitride passivation prevents the accumula-
tion of ions directly at the surface of TiSe2, this was not found to reduce the capacity 
of the gate much, as demonstrated by our results and those of a recent work36.
2D superconducting properties and the K–T transition. As discussed in the main 
text, the superconducting transition under different fixed perpendicular magnetic 
fields was measured. Extended Data Fig. 3b shows the magnetoresistance plot for 
a charge-carrier density of n = 2.67 × 1014 cm−2. The upper critical field HC2(T) 
values can be determined from each curve at the intercept of extrapolations from 
the normal state and the superconductivity state. HC2(0) can be derived by inter-
polating the plot curve to zero temperature, which gives a value of 450 mT. The 
superconducting coherence length therefore can be derived from ξ φ( ) = ( )/H0 0C2 0

ξ φ( ) = ( )/H0 0C2 0 . The minimum ξ that corresponds to the maximum HC2 point is 
about 22 nm, which is more than twice as large as the thickness of the measured 
device, indicating that superconductivity in our device is expected to have a  
2D character.

For the K–T transition, the current–voltage response becomes nonlinear; a  
V ∝ Iα relation is expected as a result of the vortex–antivortex pair unbinding37. 
Consistent behaviour is also observed in our sample, as shown in Extended Data 
Fig. 3a.

To confirm the νz value that determines the nature of the quantum critical 
behaviour in our system, we also measured the temperature-dependent supercon-
ducting transition under perpendicular magnetic field at a fixed charge-carrier 

density of n = 2.67 × 1014 cm−2 (see Extended Data Fig. 3b). By using finite size 
scaling with the formula / = (( − ) )ν− /R R F B B T z

S C C
1 , where RC and BC are two 

fitting parameters and F is an arbitrary function with F(0) = 1 (ref. 38), the data 
are expected to collapse into two sets of lines, with a certain νz value. As displayed 
in Extended Data Fig. 3c, the data collapse for νz ≈ 2/3, which confirms the previ-
ous result.
Magnetoresistance oscillations at other doping levels. The magnetoresistance 
oscillation is observed when we sweep a perpendicular magnetic field at different 
temperature in the superconducting state. From the QCP point n = 1.2 × 1014 cm−2 
to the near-optimum doping n = 5.9 × 1014 cm−2, the oscillations can be observed 
for all doping levels. However, these oscillations can only be clearly observed for 
certain temperatures T0 and magnetic fields B0, whereas T0 and B0 values increase 
with increasing doping. For instance, for n = 1.3 × 1014 cm−2, T0 is 0.3 K and B0 
is 0.06 T; for n = 2.7 × 1014 cm−2, T0 increases to 0.4 K and B0 increases to 0.13 T, 
as one can see from Extended Data Fig. 4. Although T0 and B0 values as well 
as the periods of oscillation δB increase with doping level, the amplitude of the 
magnetoresistance oscillation does not monotonically depend on doping levels. 
We find that the oscillating amplitude for doping levels of 1.3 × 1014 cm−2 and  
5.9 × 1014 cm−2 is larger than that for other doping levels we measured. One can 
clearly see more contrast or sharpness for the periodic straight lines in Fig. 4b 
and Extended Data Fig. 5c than in Extended Data Fig. 5d. The stronger magneto-
resistance oscillations at these doping levels could be related to the enhanced 
Cooper-pair phonon interaction, aroused by strong quantum fluctuation.
Temperature dependence of the sheet resistance. We plot the temperature 
dependence of the sheet resistance between 3 K and 100 K with the doping level 
ranging from 4 × 1014 cm−2 to 13 × 1014 cm−2 as shown in Extended Data Fig. 5a 
and b. By taking the temperature derivative d(log(R − R0))/d(log(T)), α is extracted 
at each doping as a function of the temperature.

At doping levels away from optimal doping, 7.5 × 1014 cm−2, we observe Fermi-
liquid behaviour at low temperatures below TCDW. At the optimal doping level an 
exponent of 3/2 is observed over a wide range of temperature; this exponent is 
similar to the one observed in MnSi39. As described in the main text, microscopic 
fluctuations of the order parameters from those of a CCDW to those of an ICDW 
gives rise to this temperature dependence.
Point-contact conductance spectroscopy. Point-contact conductance spec-
troscopy of the normal-superconducting junction between Au/Ti and TiSe2 was 
performed by the two-terminal a.c. + d.c. method, whereby the d.c. voltage is 
modulated with an additional a.c. voltage, such that the derivative dI/dV can be 
measured at the first harmonic by a current preamplifier and standard lock-in 
amplifier techniques.

The contacts were patterned by standard electron beam lithography using a 
PMMA positive resist. The development of the resist is performed in air to allow 
the oxidization of the contact region such that the contacts (despite not being 
nanoscale) are in the so-called ‘soft’ contact regime that has been successfully 
applied to pnictide and copper oxide superconductors40. In this regime spectro-
scopic information can be obtained because the transport is primarily through 
multiple point-like pinholes whose individual dimension is smaller than the mean 
free path in the contact.
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Extended Data Figure 1 | Characterization of the high quality of  
single-crystal TiSe2. a, X-ray diffraction of both single-crystal and powder 
TiSe2 sample. The inset shows the as-grown TiSe2 single crystal. b, Raman 
spectroscopy pattern at both high temperature and low temperature.  

The two main phonon modes, Eg and A1g, are distinct, whereas only below 
TCDW are the peaks corresponding to CDW phonon mode detectable. The 
inset displays the unit cell of the TiSe2 lattice and the main phonon mode 
vectors.

© 2016 Macmillan Publishers Limited. All rights reserved



LetterreSeArCH

Extended Data Figure 2 | The Hall bar device and its characterization by Hall effect measurement. a, Optical microscope picture. b, Atomic force 
microscope picture of the Hall bar device. c, Temperature dependence of the charge-carrier density measured by the Hall effect at different top gate 
voltages, VTG. Scale bar, 5 μm.
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Extended Data Figure 3 | Characterization of the K–T transition.  
a, The current–voltage power-law fit for n = 5.9 × 1014 cm−2 at different 
temperatures is consistent with the behaviour of the 2D K–T transition. 
b, Temperature-dependent magnetoresistance of the superconducting 

transition at different fixed perpendicular magnetic fields for 
n = 2.67 × 1014 cm−2. c, The magnetoresistance data in b collapses  
into two sets of lines by so-called finite size scaling.
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Extended Data Figure 4 | The R versus T power-law fit indicates the existence of strong quantum fluctuation. a, Temperature dependence of the sheet 
resistance for different doping levels. b, The data shown in a is plotted on a log–log scale.
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Extended Data Figure 5 | The magnetoresistance oscillation for charge-carrier densities of 1.3 × 1014 and 2.7 × 1014 cm−2. a, c, Perpendicular 
magnetic-field-dependent magnetoresistance measured at different temperatures. b, d, Plots of dRS/dB against B and T for n =1.3 × 1014 cm−2 and 
n = 2.7 × 1014 cm−2, respectively.
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Extended Data Figure 6 | The conductance measured for a charge-carrier density of 2.1 × 1014 cm−2. a, Magnetic field dependence at 0.1 K.  
b, Temperature dependence at zero magnetic field. a.u., arbitrary units.
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